METROPOLITAN STATE COLLEGE of DENVER Office of Academic Affairs

REGULAR COURSE SYLLABUS

School of: Letters, Arts and Sciences	
Department: Mathematical and Computer Sciences	
Prefix & Course Number:	Crosslisted With*:
Course Title: Principles of Database Systems	
Check All That Apply:	Required for Major: Required for Minor: Specified Elective:
	Required for Concentration: Elective: X Service Course:
Credit Hours: <u>4</u> (<u>4</u> + <u>0</u>)	x.
Total Contact Hours per semester (assuming 15-16 week semester):	
Lecture 60 Lab 0 Inte	ernship <u>0</u> Practicum <u>0</u> Other (please specify type and hours): <u>0</u>
Schedule Type(s): L Grading Mode(s): L	
Variable Topics Courses (list restrictions, including the maximum number of hours that can be earned**):	
** NOTE: This information must be included in the course description.	
Restrictions (Variable Topics Course):	
Prerequisite(s): CS 2050 and MTH 1410 with grades of "C" or better, or permission of instructor	
Corequisite(s): none	
Prerequisite(s) or Corequisite(s):	
Banner Enforced: Prerequisite(s): <u>CS 2050 and MTH 1410</u> Corequisite(s):	

Catalog Course Description:

Prerequisite(s) or Corequisite(s): _____

This course covers the principles and methodologies of database design, and techniques for database application development. The topics covered include relational algebra, SQL queries, normalization, entity-relationship model, SQL/Host-language interface, stored procedure, object-oriented databases, and semi-structured databases.

APPROVED; Department Curriculum Committee Date Department Chair OR Program Director Date Lundo JAMA. 10/11 Dean OR Associate Dean Date 21 0 6 Date

Associate VP, Academic Affairs

*If crosslisted, attach completed Course Crosslisting Agreement Form

Required Reading and Other Materials will be equivalent to:

Garcia-Molina, H, Ullman, J.D., and Widom, J. (2009) *Database Systems: The Complete Book*, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey

Specific, Measurable Student Behavioral Learning Objectives:

Upon completion of this course the student should be able to

- 1. Describe the difference among relational databases, semi-structured databases and object-oriented databases
- 2. Prepare a relational/object-relational schema from a conceptual model developed using the entityrelationship model
- 3. Demonstrate decomposition of a schema that maintains lossless-join and dependency-preservation properties
- 4. Implement relational or object-oriented databases that incorporate key, entity integrity, referential integrity constraints, indices, triggers, stored procedures, transaction management, concurrency control, and SQL/Host-language interface
- 5. Write complex queries to elicit information from a database

Detailed Outline of Course Content (Major Topics and Subtopics) or Outline of Field Experience/Internship (experience, responsibilities and supervision)

- I. Overview of databases
- II. Relational model and relational algebra
- III. SQL
- IV. Constraints and triggers
 - A. Keys and foreign keys
 - B. Constraints on attributes and tuples
 - C. Assertions and triggers
- V. Functional dependencies, multi-valued dependencies and normalization
- VI. Entity-Relationship model and ER-to-Relational mapping
- VII. Object model and object-oriented databases
- VIII. SQL in Server Environment
 - A. The three-tier environment
 - B. SQL/Host-language interface
 - C. Stored procedure
- IX. Concurrency control and transaction management
- X. Introduction to query execution and query optimization
- XI. Semi-structured data model and its query language

Evaluation of Student Performance

The following as determined by the instructor

- 1. Assignments
- 2. Programming Projects
- 3. Oral Presentation
- 4. Research papers and/or Book Reports
- 5. Quizzes and Examinations
- 6. Final Examinations