
CS - 3250 - Software Development Methods and Tools

Status completed
Tracking: LAS 1617-42
Department Mathematical and Computer Sciences, Department of
Status: Active-Visible
Prefix: CS
Course Number: 3250
Course Type: Computer Science
Course Title: Software Development Methods and Tools
Transcript Course Title: SW Dev Methods and Tools
Check All That Apply: Required for Major
Resource Implication
Narrative

As those currently teaching CS 4250 will typically teach this course, no new
resources are required.

Justification for Proposal

This course is based on the faculty's observations of preparedness for upper-
division classes. Our belief is that our students need more software engineering
tools and techniques in order to be successful in upper-division courses as those
courses require more complex software. Our current introductory courses do not
contain enough software engineering to adequately prepare our students.

Credit Hours: 4
Schedule Type: Lecture
Grade Mode: Letter
Lecture: 60
Lab:
Internship:
Practicum:
Other:
Additional Student Work
Hours per course: 120

Variable topics umbrella
course: No

If yes, number of
credits/ repeats allowed
Specified repeatable
course: No

If yes, number of
credits/ repeats allowed
Prerequisite(s): CS 2050, ENG 1020, and CAS 1010 with a grade of "C" or better.
Corequisite(s):
Prerequisite(s) and/or
Corequisite(s):
Banner Prerequisite(s): CS 2050, ENG 1020, and CAS 1010 with a grade of "C" or better.
Banner Corequisite(s):
Banner Prerequisite(s)
and/or Corequisite(s):
Level Undergraduate
Class

Fall 2016

Page 1 of 3

Metropolitan State University of Denver
Regular Course Syllabus

Program/Major
Student attribute

Catalog Course
Description:

This course introduces the basics of large-scale software development. As
software size increases, so does the need to use appropriate tools and
development techniques. The phases of traditional software development and
several current software development lifecycles are introduced. The use of object-
oriented techniques for large projects is covered. Creating appropriate and
sufficient tests for test-driven and behavior-driven development is discussed.
Students learn how to analyze their programs to detect errors and increase
performance. The various types of automation used in creating a product
are introduced. Students learn about group dynamics and work on a significant
project in groups.

Required Reading and
Other Materials will be
equivalent to:

• Beginning Software Engineering 1st Edition, Rod Stephens, ISBN-13:
978-1118969144, ISBN-10: 1118969146, 2015

• Software Engineering: A Practitioner's Approach 8th edition, Roger S.
Pressman and Bruce Maxim, ISBN-13: 978-0078022128, ISBN-10:
0078022126, 2014

• Clean Code: A Handbook of Agile Software Craftsmanship 1st Edition,
Robert C. Martin, ISBN-13: 978-0132350884, ISBN-10: 0132350882,
2008

Specific, Measurable
Student Behavioral
Learning Objectives:

1. Select an appropriate software development lifecycle for a project.
2. Compare the various agile software development lifecycles.
3. Evaluate different object-oriented techniques for problem solving.
4. Construct a testing environment that includes code coverage analysis.
5. Collect and analyze both static and dynamic properties for a program.
6. Organize a project group with appropriate roles for members.
7. Compare and contrast several software architectures.

Detailed Outline of
Course Content (Major
Topics and Subtopics) or
Outline of Field
Experience/ Internship

1. Software Development Lifecycle
1. Traditional
2. Current

2. Object-oriented software development
1. Inheritance
2. Interfaces
3. Iterators/generators
4. Polymorphism
5. Operator overloading
6. Lambdas
7. Duck typing
8. Regular expressions

3. Software configuration management
1. Revision control
2. Branching, merging

4. Fundamentals of design patterns
5. Test

1. Test-driven development
2. Behavioral-driven development
3. Coverage
4. Mocks, stubs, etc.

6. Program analysis
1. Static
2. Dynamic

7. Debugging
1. Tracing
2. Break points
3. Watches
4. Logging

CS 3250 - Fall 2016

Page 2 of 3

8. Automated build/test/deploy
9. Human factors in software development

1. Working in groups
2. Project management
3. Career management
4. Human-computer interaction

10. Widely-used software architectures
11. Social dimensions of software

Evaluation of Student
Performance

Required:

1. Active participation on a development team.
2. Oral and written team presentations.
3. A mid-term and final examination on the material covered in the course.

Optional: quizzes, classwork, homework.
Learning Objectives
Distribution of Credit
Hours 4 (4+0)

Steps Edits Decision Date
Originator
Steve Beaty 6 approve 09/30/2016 03:40PM
Department Curriculum
Committee Chair
Clark Dollard 0 approve 10/03/2016 02:13PM
Department Chair
Lindsay Packer 4 approve 10/05/2016 02:01PM
Dean's Office Tracking
Assignment
Kelsey Smith 1 approve 10/06/2016 09:17AM
Substantive College
Level
Linda Lang-Peralta 0 approve 12/19/2016 04:50PM
Mona Mocanasu 1 approve 12/15/2016 01:39PM
Steve Beaty 2 approve 12/15/2016 01:21PM
AVP Academic and
Student Affairs
Bernice Harris 1 approve 12/21/2016 08:37AM

CS 3250 - Fall 2016

Page 3 of 3

