METROPOLITAN STATE COLLEGE of DENVER Office of Academic Affairs

REGULAR COURSE SYLLABUS

School of: Letters, Arts, and Sciences
Department: Mathematical and Computer Sciences
CIP Code: <u>11.0701</u>
Prefix & Course Number: <u>CS 3240</u> Crosslisted With*:
Course Title: Introduction to the Theory of Computation
Check All That Apply: Required for Major: X Required for Minor: X Specified Elective: X Required for Concentration: X Elective: X Service Course: Credit Hours: 2 (2+0)
Total Contact Hours per semester (assuming 15-16 week semester):
Lecture 30 Lab 0 Internship 0 Practicum 0 Other (please specify type and hours): 0
Schedule Type(s): Lecture Grading Mode(s): Letter
Variable Topics Courses (list restrictions, including the maximum number of hours that can be earned**):
** NOTE: This information must be included in the course description.
Restrictions (Variable Topics Course):
Prerequisite(s): CS 2050 and MTH 3170 each with a grade of "C" or better, or permission of instructor.
Corequisite(s): none
Prerequisite(s) or Corequisite(s):
Banner Enforced:
Prerequisite(s): Corequisite(s): Prerequisite(s) or Corequisite(s):
Catalog Course Description: This course explores language theory and computability. Language theory includes: regular expressions, regular languages, and finite automata (deterministic and non-deterministic); context-free languages and pushdown automata; and language grammars. Computability includes: Turing machines and their computing power; unsolvable problems; and intractable problems (NP-Completeness).
APPROVED: Wallows 10/14/10
Department Curriculum Committee 10/19/16
Department Chair OR Program Director Date 11/12/10
Dean OR Associate Dean Date 3/4/11
Associate VP, Academic Affairs Date

^{*}If crosslisted, attach completed Course Crosslisting Agreement Form

Prefix and Course Number: CS 3240 September 13, 2010

Required Reading and Other Materials will be equivalent to:

Introduction to Theory of Computation, by Michael Sipser, Course Technology, 2006,

ISBN: 0-534-95097-3

Specific, Measurable Student Behavioral Learning Objectives:

Upon completion of this course the student should be able to

- 1. Determine the language represented by a regular expression
- 2. Create a regular expression from a language description
- 3. Construct a deterministic finite automaton accepting a given language
- 4. For a given finite automaton (deterministic or nondeterministic) determine if a string is accepted
- 5. Draw a state diagram for a finite automaton (deterministic or nondeterministic) that accepts a given language
- 6. For a given finite automaton (deterministic or nondeterministic) find a minimum-state equivalent deterministic finite automaton
- 7. Use a grammar to generate or accept a string
- 8. For a given grammar give the derivation(s) of a specified string and draw the corresponding parse tree(s)
- 9. Construct a context-free grammar for a language
- 10. Construct a pushdown automaton that accepts a given language
- 11. Show that a specific language is context-free
- 12. Trace the computation for a specified Turing machine
- 13. Create a Turing machine to solve a specified problem
- 14. Determine whether a problem about Turing machines is solvable or undecidable
- 15. Discuss the Chomsky hierarchy and arrange classes of languages in order of increasing generality
- 16. Discuss relative computational power of language recognizers (e.g., pushdown automata, regular expressions)

Detailed Outline of Course Content (Major Topics and Subtopics):

- I. Sets and Relations
 - A. Sets, relations, and functions
 - B. Closures and algorithms
- II. Languages
 - A. Alphabets and languages
 - B. Regular expressions
- III. Regular Languages
 - A. Deterministic finite automata
 - B. Nondeterministic finite automata
 - C. Languages that are and are not regular
 - D. State minimization
 - E. Algorithmic aspects of finite automata
- IV. Context-free Languages
 - A. Context-free grammars and languages
 - B. Parse trees
 - C. Pushdown automata
 - D. Determinism and parsing
- V. Programming Languages and Language Theory
 - A. Compilation issues
- VI. Turing Machines
 - A. Computing with Turing machines
 - B. Extensions of Turing machines random access, nondeterministic, 2 tapes, etc.
 - C. Universal Turing machines
 - D. Grammars

September 13, 2010

Prefix and Course Number: CS 3240

VII. Undecidability

- A. The Church-Turing thesis
- B. The halting problem
- C. Unsolvable problems about Turing machines
- D. Unsolvable problems about grammars
- E. Properties of recursive languages

VIII. Introduction to Computational Complexity

A. P versus NP

Evaluation of Student Performance

A combination of the following:

- 1. Homework and Programming Assignments
- 2. Quizzes and Examinations
- 3. Final Examination