Metropolitan State University of Denver Regular Course Syllabus

Fall 2016 CS - 1030 - Computer Science Principles Status completed Approval Process Name 08. UG Course Modification #2 (Substantive College) (17-18) Department Mathematical and Computer Sciences, Department of Prefix: CS Course Number: 1030 Course Type: **Computer Science** Course Title: **Computer Science Principles** Transcript Course Title: **Computer Science Principles** Check All That Apply: Required for Major, Elective Credit Hours: 4 Schedule Type: Lecture Grade Mode: Letter Lecture: 60 Lab: Internship: Practicum: Other: Additional Student Work 120 Hours per course: Variable topics umbrella No course: If yes, number of credits/ repeats allowed Specified repeatable No course: If yes, number of credits/ repeats allowed Prerequisite(s): Corequisite(s): Prerequisite(s) and/or Corequisite(s): Banner Prerequisite(s): Banner Corequisite(s): Banner Prerequisite(s) and/or Corequisite(s): Level Class Program/Major Student attribute Computer Science Principles introduces students to the central ideas of computer science vital for success in today's world. Students are invited to develop the computational thinking skills that apply across disciplines, as we Catalog Course explore computing from multiple perspectives, including: cognitive, economic, Description: ethical, legal, mathematical, philosophical, social, and technical. The course integrates computational thinking practices with big ideas in computing to address: collaborative teamwork, communication, creativity, critical thinking, innovation, problem solving, and programming. Students are afforded the

	opportunity to participate in active-learning experiences and to create computational artifacts that bring ideas to life.			
	Schneider, G. M. & Gersting, J. (2015) Invitation to Computer Science, 7th Edition. Course Technology.			
Required Reading and Other Materials will be equivalent to:	and/or Walker, H. M. (2012) The Tao of Computing, Second Edition, Chapman and Hall/CRC.			
	and/or			
	Parsons, J. J. (2016) New Perspectives on Computer Science, 19th ed. Course Technology.			
	Additional topic-specific readings, such as:			
	 Leiber, J. (1985) Can Animals and Machines Be Persons?: A Dialog. Hackett. MacCormick, J. & Bishop, C. (2013) Nine Algorithms that Changed the Future. Princeton University Press. 			
	Programming Support (language decided by instructor), such as:			
	 MIT Media Lab. (2016) Scratch, https://scratch.mit.edu (accessed: 2 May 2016) Code.org. (2016) Learn. http://code.org/learn/beyond (accessed: 2 May 2016) 			
	 Processing Foundation. (2016) Processing – Tutorials. http://processing.org/tutorials/ (accessed: 2 May 2016) 			
Specific, Measurable Student Behavioral Learning Objectives:	 Upon completion of this course the student should be able to: 1. Analyze effects of computation from multiple perspectives (including, but not limited to, scientific, sociological, ethical, economic, cultural, 			
	 community, and global) 2. Create computational artifacts 3. Use abstractions and models 4. Evaluate problems and artifacts from computational-inclusive 			
	viewpoints5. Communicate processes and results6. Work effectively in collaborative teams			
Detailed Outline of Course Content (Major Topics and Subtopics) or Outline of Field Experience/ Internship	Course content integrates big ideas in computing with computational thinking practices, both outlined below, such that all practices and big ideas are represented. [Reference: The College Board. (2016) <i>AP Computer Science Principles: Course and Exam Description.</i> New York, College Board.]			
	I. Big Ideas in Computing			

A. Creativity: Computing is a creative human activity
Creative development can be an essential process for creating computational artifacts
Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem
Computing can extend traditional forms of human expression and experience
B. Abstraction: Abstraction reduces information and detail to facilitate focus on relevant concepts
A variety of abstractions built on binary sequences can be used to represent all digital data
Multiple levels of abstraction are used to write programs or create other computational artifacts
Models and simulations use abstraction to generate new understanding and knowledge
C. Data and Information: Data and information facilitate the creation of knowledge
People use computer programs to process information and to gain insight and knowledge
Computing facilitates exploration and the discovery of connections in information
There are trade-offs when representing information as digital data
D. Algorithms: Algorithms are used to develop and express solutions to computational problems
Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages
Algorithms can solve many, but not all, computational problems
E. Programming: Programming enables problem-solving, human expression, and creation of knowledge
Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society)
People write programs to execute algorithms
Programming is facilitated by appropriate abstractions

Programs are developed, maintained, and used by people for different purposes
Programming uses mathematical and logical concepts
F. The Internet: The Internet pervades modern computing
The Internet is a network of autonomous systems
Characteristics of the Internet influence the systems built on it
Cybersecurity is an important concern for the Internet and systems built on it
G. Global Impact: Computing has global impact
Computing enhances communication, interaction, and cognition
Computing enables innovation in nearly every field
Computing has global effects — both beneficial and harmful — on people and society
Computing innovations influence and are influenced by the economic, social, and cultural contexts in which they are designed and used
Appropriate technologies and tools facilitate the accessing of information and enable the ability to evaluate the credibility of sources
II. Computational Thinking Practices
A. Connecting Computing
Identify impacts of computing
Describe connections between people and computing
Explain connections between computing concepts
B. Creating Computational Artifacts
Create a computational artifact with a practical, personal, or societal intent
Select appropriate techniques to develop a computational artifact
Use appropriate algorithmic and information management principles
C. Abstracting

	Explain how data, information, and knowledge are represented for computational use		
	Explain how abstractions are used in computation or modeling Identify abstractions		
	Describe modeling in a computational context		
	D. Analyzing Problems and Artifacts		
	Evaluate a proposed solution to a problem		
	Locate and correct errors		
	Explain how and artifact functions		
	Justify appropriateness and correctness of a solution, model, or artifact		
	E. Communicating		
	Explain the meaning of a result in context		
	Describe computation with accurate and precise language, notations, or visualizations		
	Summarize the purpose of a computational artifact		
	F. Collaborating		
	Collaborate with others in solving a computational problem		
	Collaborate with others in producing an artifact		
	Foster a constructive, collaborative climate by resolving conflicts and facilitating the contributions of team members		
	Exchange knowledge and feedback with team members		
	Review and revise collective work as needed to create a high- quality artifact		
	Evaluation mechanisms may include, but are not limited to, any or all of the following:		
Evaluation of Student Performance	 In-class Activities Homework Projects 		
	Quizzes / Exams		
Learning Objectives			

Distribution of Credit Hours	(4 + 0)			
Steps	Decision	Date		
Originator				
Jody Paul	approved	11/22/2016 12:50PM		
Department Curriculum Committee Chair				
Clark Dollard	approved	11/27/2016 10:22PM		
Department Chair				
Lindsay Packer	approved	11/28/2016 04:16PM		
Dean's Office Tracking Assignment				
Kelsey Smith	approved	11/29/2016 08:39AM		
Substantive College Level				
Jody Paul	approved	06/04/2017 02:19PM		
Linda Lang-Peralta	approved	12/11/2017 05:41PM		
Mona Mocanasu	approved	12/07/2017 06:10PM		
AVP Academic and Student Affairs				
Chad Harris	approved	01/17/2018 08:11AM		