Communicating Scientific Data Effectively

Karen Simpson <u>simpson.karen@epa.gov</u>

"Just as there is science to be communicated, there is a science of communication."

- Fischhoff and Scheufele, 2013

Overview

- Importance of effective communication
- 10 science communication essentials
- The "art" of effectively communicating science

Importance of Effective Science Communication

https://blogs.scientificamerican.com/ guest-blog/effective-communicationbetter-science/ "Science communication is part of a scientist's everyday life. Scientists must give talks, write papers and proposals, communicate with a variety of audiences, and educate others."

"Effective communication means transmitting your message clearly and concisely so that it is understood."

"When scientists communicate more effectively, science thrives."

Importance of effective science communication

- Can facilitate the link between knowledge and action
- Can inform and empower the audience to produce change
- Leads to enhanced scientific understanding which can lead to paradigm shifts
- Communicating results is a significant part of doing science

1. Know your audience

- Who are you communicating with?
- Tailor communication based on the group's interests

2. Identify your objective(s)

What do you want your audience to learn or walk away with?

- Educate
- Advocate
- Raise awareness
- Build trust/credibility
- Influence policy/future research
- Secure future funding
- Encourage change
- Be part of a dialogue/gather feedback

3. Start with the most important information

- Scientific and medical communities provide
 - background → methods → results → conclusion
- Public, media and business stakeholders absorb information in the opposite order as scientific papers
 - conclusion → results → methods → (background)

https://www.aaas.org/resources/communication-toolkit

This Photo by Unknown Author is licensed under CC BY-SA

4. Know when to use jargon

- Acronyms, abbreviations and technical terms can be used in research papers and presentations to other scientists in your field
- Use commonly understood terms and when communicating to a broader audience or a mixed audience

5. Be relatable

- Use stories and analogies
- Let your personality shine through
- Show enthusiasm!

This Photo by Unknown Author is licensed under CC BY-NC

6. Use a balance of visuals and text

- Charts, graphs and photos make the presentation more engaging
- Use as few words as possible

7. Follow the rule of 3s

- Focus and emphasize 3 major points
- Boosts memory of your audience
- Helps you stay focused and remember what you want to say

shutterstock.com • 120497971

THE STOP LOOK & LISTEN ROAD SAFETY SHOW

Image: Constraint of the second state of the second sta

3 step process for communicating your science

8. Talk about the scientific *process*

- Scientific results rarely yield a concrete yes or no answer
- Explain why you chose certain research methods
- Explain how you got to your results
- Describe next steps that you will take and why

9. Focus on the bigger impact

- Relate your research to the bigger picture
- Why is this research important?

10. Develop an elevator pitch

- Help someone quickly understand the value of your research
- Explain why your research is exciting and relevant
- What problem are you trying to solve?

- 1. Know your audience
- 2. Identify your objectives
- 3. Start with the most important information
- 4. Know when to use jargon
- 5. Be relatable
- 6. Use a balance of visuals and text
- 7. Follow the rule of 3s
- 8. Talk about the scientific process
- 9. Focus on the bigger impact
- 10. Develop an elevator pitch

The "art" of communicating science

The "art" of communicating science

L Data Visualization

- Tables
- Charts
- Statistical graphics
- Plots
- Infographics

Month	Number of Visit
January	1
February	
March	1
April	
Мау	1
June	
July	1
August	
September	
October	1
November	
December	

LOSS OF SPECIES

1 OUT OF 4 Amphibians

MAMMALS 8

OUT OF 7

WFR TO STOP THE LOSS

EVERY (20) MINUTES

EVERY

70%

LOST A YEAF

MINUTES

75% OF GENETIO DIVERSITY IN GRICULTURAL CROP HAS BEEN LOS

IODIVERSITY IS NECESSARY FOR

30 YEARS

L Data Visualization

Visualizing data helps to:

- Tell a story without using a lot of text
- Identify patterns in the data
- Provide a new or unique perspective on a dataset
- Make complex data more accessible, understandable and useable
- Communicate information clearly and efficiently

L Data Visualization

Do's:

- Know the point of the visualization
- Use visual cues to help guide audience through the data (colors, symbols, and shapes)
- Keep it simple and eliminate chart "junk"
- Function first (type of chart), then form (colors, legend, size, fonts, etc.)
- ✓ Be consistent with your form

Don'ts:

- Use colors that aren't easily differentiated
- Give too much information at once
- Use uneven intervals or axes that exaggerate differences within the data
- ✓ Use bad data

Lata Visualization

Samples per station

■ Station 1 ■ Station 2 □ Station 3

<u>.</u> Concentration of Chemical X (mg/L)

Data Visualization

Concentration of Chemical X Measured in 4 Treatments

Conceptual Diagrams

- Can also be called a thought drawing or system drawing
- Used to communicate processes and relationships in a visually appealing and understandable format
- Uses colors, symbols, shapes to represent elements
- Uses lines and arrows to represent relationships between elements

Conceptual Diagrams

- Reasons to use conceptual drawings:
 - Communicate key messages and visualize scientific data
 - Provide a better understanding of the "big picture"
 - Span cultural boundaries and language barriers
 - Can help clarify thinking and facilitate further communication
 - Identify data gaps, management priorities and key features/threats

Used to:

- Display data spatially
- Provide geographical context or point of reference
- Identify geographic patterns in spatial and/or non-spatial data
- Identify hot spots or areas of interest

Elements should include:

- Legend
- Scale
- Reference points
- Title
- Consistent and appropriate colors
- Simplicity
- Appropriate size to emphasize the point of the map
- Zoom ins/blow outs of areas of interest
- As few layers as possible to convey the point

Map: Los Angeles River Watershed

Credit: Council for Watershed Health

- Powerful visualizations
- Can be used to communicate results
- Can be used to make communication materials more appealing
- Can underscore results more effectively than words
- Can help translate complex scientific ideas

Watson & Lom, 2008

Photo from Unsplash.com

Free sources of photos: Take your own www.flickr.com www.istockphoto.com www.unsplash.com www.designerspics.com www.freedigitalphotos.net www.burst.shopify.com

- Dress for success
- Make eye contact
- Find a balance with your volume and speed
- Sit/stand up straight
- Practice your presentation
- Do an A/V check and get familiar with your surroundings
- Take advantage of public speaking opportunities

Review

- Importance of effective science communication
- Science communication essentials
- The "art" of effectively communicating science

Recommended Reading

- Fischhoff, B., & Scheufele, D. A. (2013). The science of science communication. Introduction. *Proceedings of the National Academy of Sciences of the United States of America*, 110 Suppl 3(Suppl 3), 14031– 14032. <u>https://doi.org/10.1073/pnas.1312080110</u>
- Kuehne, et al. (2014) Practical science communication strategies for graduate students. *Conservation Biology*. 28(5). 1225-1235 <u>https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/cobi.12305</u>
- Watson FL, & Lom B. (2008) More than a picture: helping undergraduates learn to communicate through scientific images. *CBE Life Sci Educ.*, 7(1):27-35. doi:10.1187/cbe.07-07-0045 <u>https://www.lifescied.org/doi/full/10.1187/cbe.07-07-0045</u>
- <u>www.sciencevisualizationclass.wordpress.com</u> (Univ. Maryland Center for Environmental Science)

Questions?