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Abstract. We give several examples illustrating the prevalence
of permutation groups in music theory, in particular using inver-
sions and certain Music Theoretic functions called P,L,R func-
tions, which arise in an area of study called Neo-Riemannian The-
ory. We find natural identifications of groups arising in this theory
with well-known groups and continue an examination of the sub-
group structure of the hP,L,Ri group, expanding upon previous
work in the literature. We then relate the T/I group, of musi-
cal Transposition and Inversion permutations, to a musical object
called the Circle of Fifths. It is shown that a symbolic represen-
tation of the Circle of Fifths can be obtained from the orbit of a
Cmajor under the group hT7i.

1. Introduction

The use of major and minor triples - three notes played in tandem
with a highly specific structure - in music is as prolific as it is essential
and has a vast amount of hidden symmetry.

Group theory is a branch of the mathematical subject of abstract al-
gebra that precisely describes the symmetries of diverse objects, which,
as we will see herein, includes musical chords.

In this article, we provide a gentle introduction to the methods of
this theory and some ways it can be used to describe the musical struc-
ture of chords and understand how they operate from a mathematical
perspective. In particular, we examine major and minor triples to de-
rive these mathematical relationships via the actions of mathematical
objects called permutation groups.

Major and minor chords are named after their root, that is, the first
note of the major or minor scale in which they belong, and consist of
the root, the third, and the fifth of the corresponding scale. For musical
purposes, the order of these notes does not change their identification.
For example, a “c minor” chord consists of the notes (c, e[, g) played
simultaneously. While the inverted chord (e[, g, c) has a di↵erent order,
it is still considered a c minor chord.
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In this article, we will examine three types of permutations that
act upon such chords: chord inversions, which change the order of the
notes; the P, L,R permutations of Neo-Riemannian theory, which map
chords to related sets of tones; and transpositions, which shift notes
within a set we identify with the symbol Z12.

Our explicit goal is that these discussions will illuminate hidden
mathematical structure within the study of chords in a self-contained
manner accessible to the curious undergraduate and professional math-
ematician alike. Through this article, we hope to introduce the reader
to some of the ideas in the existing literature as well as introduce some
new outlooks on the topic. We remark that in addition to the references
cited in the course of this article, the book [1] by the well-known rep-
resentation theorist D. Benson provides a very nice, detailed account
of the various roles that mathematics plays in music, with a chapter
dedicated to group theoretic applications. Readers interested in further
reading are encouraged to explore this and the other references.

2. Background: Musical Chords

Here we will cover the bare essentials of music theory pertaining to
our study of chords and introduce some mathematical interpretations
widely used in the literature.

Musical notes are physical frequencies of sound waves that travel
through the air and to the human ear. There are twelve distinct fre-
quencies, called semitones, that are considered musically di↵erent. If
the reader would imagine a piano keyboard, they will notice that there
are repeating patterns of keys, each one corresponding directly to a
semitone. Musically, we tend to begin at a semitone called “c”. The
keyboard ascends in pitch to the right with the following sequence of
semitones beginning at c:

c, c]/d[, d, d]/e[, e, f, f]/g[, g, g]/a[, a, a]/b[, b, c.

We notice that there are notes that have either a [ or ] symbol on
the right. These mean down one semitone and up one semitone, re-
spectively. The notes such as f]/g[ are called enharmonics and are
musically equivalent to each other. The reader may think about en-
harmonic equivalence as one black key on a keyboard going by two
names which are more indicative of location than anything else.

One full sequence through all uniquely identified semitones is called
an octave. All the frequencies in a higher octave, (e.g. on the far
right of a piano keyboard) are integer multiples of the frequencies in
a lower octave (e.g. the far left on a piano keyboard). Because of
this and because of enharmonic equivalence, it is mathematically much
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easier to view semitones as the integers modulo 12, written Z12. We
may assign one value in Z12 to a semitone. Let the note in the table
correspond to the number in Z12 as below:

Z12 0 1 2 3 4 5 6 7 8 9 10 11
Note c c] d d] e f f] g g] a a] b

From this numerical interpretation, we may begin to examine the math-
ematical properties of musical chords.

Technically speaking, a musical chord really is any collection of the
notes of Z12 played simultaneously. In particular, a chord may have
any number of notes. For example, a trivial chord would be a single
note. For our purposes, however, we will restrict our view to special
chords called major or minor triples. Mathematically, these chords
have a very specific structure, and, from the nomenclature, exactly
three notes.

Take x 2 Z12 to be the first note of a major triple. The major triple
chord has structure as follows: (x, x + 4, x + 7); and the minor triple
has structure: (x, x + 3, x + 7); where the addition is taken modulo
12. These objects are nearly ubiquitous in musical literature. There
are exactly twenty-four major and minor triples, each with a di↵erent
starting note from Z12, and they are named by this starting note, called
the root of the chord. It is common musically to denote a major triple
with the capital letter of the root and a minor triple with the lower
case letter. We list these chords here:

MajorRoot C C] D D] E F

Chord (0,4,7) (1,5,8) (2,6,9) (3,7,10) (4,8,11) (5,9,0)
MajorRoot F ] G G] A A] B

Chord (6,10,1) (7,11,2) (8,0,3) (9,1,4) (10,2,5) (11,3,6)

MinorRoot c c] d d] e f

Chord (0,3,7) (1,4,8) (2,5,9) (3,6,10) (4,7,11) (5,8,0)
MinorRoot f] g g] a a] b

Chord (6,9,1) (7,10,2) (8,11,3) (9,0,4) (10,1,5) (11,2,6)

To avoid confusion with the mathematical notation, we will write our
chords as either an ordered triple like we see above, or as the letter
in the table with a subscript “major” or “minor”. For example, the
reader may see either Cmajor or (0, 4, 7) depending on which is more
convenient to highlight the mathematical properties at hand.
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3. Background: Groups

We will now introduce some useful aspects of group theory which are
utilized throughout the article. Mathematicians familiar with elemen-
tary group theory may wish to skip this section. We hope that those
new to the area will find this section su�cient for the purposes of this
article. However, we also hope that such readers will become interested
in the topic of group theory, in which case they may want to explore
some undergraduate texts on abstract algebra, such as [5] or [6].

A group is a mathematical object often used to understand the sym-
metry of an object. It can roughly be thought of as a number system
with just a single operation and its inverse operation, such as addition
and subtraction or multiplication and division. More precisely, a group
is a set G, together with an operation, say ?, that obeys the following
axioms:

• closure: for any x, y 2 G, the product x ? y is also in G

• associativity : (x ? y) ? z = x ? (y ? z) for any x, y, z 2 G

• there exists an identity element: that is, an element e 2 G such
that e ? x = x = x ? e for all x 2 G

• each element has an inverse: that is, for each x 2 G, there is
an element x�1

2 G satisfying x ? x
�1 = e = x

�1
? x.

So, a group is a set that maintains a particular kind of algebraic
structure under a specialized operation. In practice, the notation for
the operation ? is often compressed and instead written the way one
would write ordinary multiplication. Notice that we had no explicit
definition of what the elements of a group must look like, and, in fact,
do not really care about what these elements look like; as long as they
obey the axioms, the set they belong to is a group. This provides a
kind of useful abstraction that can be used in a variety of situations.

3.1. Examples of Groups. One of the most basic types of groups
is called a cyclic group, which is a group that can be generated by a
single element, a. That is, a group G is cyclic if there is some a 2 G

such that G = hai := {a
i : i 2 Z}.

For a finite group, what this definition means is that if we take some
element a 2 G and perform the binary operation on i iterations of a,
written a

i, then at some point we get back to the identity element. We
call k the order of a if k is the first positive integer such that ak = e.
If these iterations cycle through all elements of the group G (that is,
if the size of G and the order of a coincide), then G is a cyclic group
generated by a. For example Z12 = {0, 1, 2, ..., 11}, which we used to
describe the 12 semitones in the previous section, is a group under
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addition modulo 12, and as such, is cyclic, generated by the element 1.
More generally, the standard example of a cyclic group is Zn, the set
{0, 1, 2..., n� 1} under addition modulo n.

We will also be particularly interested in a specific type of group
called a permutation group. Given a set A, the symmetric group
Sym(A) on A is the set of all permutations on A (that is, bijective
functions A ! A), under the operation of function composition. In
particular, when A = {1, ..., n}, we write Sn for Sym(A). More gen-
erally, a permutation group on a set A is any subset of Sym(A) which
is also a group under the same operation of function composition. (In
general, we call such a subset a subgroup.)

One of the first groups usually encountered in a course on abstract
algebra or group theory, and which will be central in our discussion of
music, is a special type of permutation group called the dihedral group
of size n, which we denote by Dn

2
. This group is a set of n permutations

that correspond directly to the symmetries on a regular polygon with
n
2 vertices. For example, D4 represents the set of symmetries of a
square. We may explicitly write the group Dn

2
as the set generated

by an element a of order two and an element b of order n
2 such that

aba = b
�1. That is, letting e denote the identity, we may write

(3.1) Dn
2
= ha, b|a

2 = e = b
n
2 ; aba = b

�1
i.

What this really means in terms of a shape is that the b permuta-
tion is a solid rotation of the n/2-gon and the a permutation is a flip
about a line of symmetry. By combining these two permutations with
multiplication, we can form any possible rotation or flip about a line
of symmetry on the n/2-gon. It makes sense, then, why there are n

permutations in the dihedral group. The b permutation generates n
2

unique permutations and when multiplied on the right by a, we double
the number of unique permutations, giving us a total of n.

To write down a specific permutation, we will often use array nota-
tion. To illustrate this notation, let p denote the permutation on the
set {1, 2, 3, 4} realized in usual function notation by p(1) = 2, p(2) = 4,
p(3) = 3, and p(4) = 1. Then, we may compact this into the array:

p =

✓
1 2 3 4
2 4 3 1

◆
.

3.2. Isomorphisms and Direct Products. To make abstraction use-
ful in group theory, like in many branches of mathematics, we are often
interested in the concept of “sameness”. What makes two groups “the
same”, from a group theory point of view? Abstractly, two groups are
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considered “the same” if they are isomorphic, that is, if there is a par-
ticular function called an isomorphism between them. More concretely,
an isomorphism between two groups G and H is a bijection � : G ! H

such that for all a, b 2 G, �(ab) = �(a)�(b), where the multiplication
on the left-hand side is done under the operation on G and that on the
the right-hand side is done under the operation on H.

The concept of isomorphism allows group theorists to organize strange
groups into familiar categories, e.g. the statements: a group is dihedral,
or, a group is cyclic; mean that a given group is isomorphic to some
group within the dihedral or cyclic family, respectively. In particular,
it is well-known that if n is a natural number, every cyclic group of size
n is isomorphic to Zn, and that if A is a set of size n, then Sym(A) is
isomorphic to Sn.

The last notion we introduce from elementary group theory is that
of direct products, which describe a way to create a group from two
or more smaller groups. Suppose G and H are two groups. Then, as
sets, we can create their cartesian product, which is the set G⇥H :=
{(g, h)|g 2 G, h 2 H} of ordered pairs. This set can then be considered
as a group, called the external direct product, with the operation of
component-wise multiplication. That is, if (a, b) and (c, d) are two
pairs in G⇥H, we define (a, b)(c, d) = (ac, bd).

We can convince ourselves that this product is a group since the
component-wise multiplication of the pairs forces each individual op-
eration to be done inside a group, i.e. the first component product of
the pair in a multiplication is done within G and the second in H.

You may ask: what if the two groups G and H, rather than being
abstract groups, are considered as subgroups of some known group, K?
If the intersection is trivial, that is, if H\G = {e}, and if every element
of H commutes with every element of G, then the set {gh : g 2 G;h 2

H} forms a subgroup of K called the internal direct product.
With the internal direct product, the elements of the two groups

interact directly as elements of the larger group K, rather than as
formal ordered pairs under component-wise multiplication. However,
it is well-known that every external direct product is isomorphic to
an internal direct product. For this reason, we may use the notation
G⇥H for either an external or internal direct product.
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4. Chord Inversions

We begin our illustration of the appearance of permutation groups
in music with a relatively simple example using chord inversions.

Let us begin this examination with a C major chord. As we have
seen above, Cmajor can be viewed as the triple (0, 4, 7) of integers
modulo 12. Musically, there are two inversions of this chord from
its original form. The first is: (0, 4, 7) 7�! (4, 7, 0) and the second:
(0, 4, 7) 7�! (7, 0, 4). We may also choose not to invert the chord,
yielding (0, 4, 7) 7�! (0, 4, 7). It is important to note that an inverted
C major chord is tonally exactly the same as a regular C major chord
and so, it is still identified as such.

Visually, this can be represented on a musical sta↵:

It becomes more convenient to write the above inversions as permu-
tations:

(0, 4, 7) 7�! (0, 4, 7) =

✓
0 4 7
0 4 7

◆

(0, 4, 7) 7�! (4, 7, 0) =

✓
0 4 7
4 7 0

◆

(0, 4, 7) 7�! (7, 0, 4) =

✓
0 4 7
7 0 4

◆
.

We see that the first row of the above matrices represents the original
chord and the second row represents the inverted chord.

To describe a more general case, let x1, x2, x3 2 Z12 be notes in
a chord. We assume these notes form a major or minor triple. For
convenience, let C denote the set of major and minor triple chords
and N denote the set of all possible inversions of all major and minor
chords. We note that |C| = 24 and |N| = 3 · 24 = 72.

To make the permutations describing inversions precise, define ⇢n :
N ! N, for n = 1, 2, 3 as:
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⇢1 :=

✓
x1 x2 x3

x1 x2 x3

◆
, ⇢2 :=

✓
x1 x2 x3

x2 x3 x1

◆
, and ⇢3 :=

✓
x1 x2 x3

x3 x1 x2

◆
.

Notice that we can view each ⇢n as a member of Sym(N). Alter-
natively, given a fixed chord (x1, x2, x3) 2 C, we may view ⇢n as a
member of Sym({x1, x2, x3}). With this identification, we may view
the set I3 := {⇢1, ⇢2, ⇢3} as a subgroup of S3 by realizing ⇢1 as the
identity, noticing that ⇢3 and ⇢2 are inverses of one-another, and that
the set is closed under composition. We can further see that ⇢

2
2 = ⇢3

and ⇢
3
2 = ⇢1, so that in fact ⇢2 generates the group I3, which is therefore

cyclic of size three. Together, this yields the following:

Lemma 1. The group I3 = {⇢1, ⇢2, ⇢3} of chord inversions is isomor-
phic to Z3.

4.1. The actions of Odd Permutations. The actions of the odd
permutations are of some mathematical interest for us. Take for ex-

ample the (12) :=

✓
x1 x2 x3

x2 x1 x3

◆
, (23) :=

✓
x1 x2 x3

x1 x3 x2

◆
, and (13) :=

✓
x1 x2 x3

x3 x2 x1

◆
actions on an E major chord. We represent this here

with the E major written on a musical sta↵.

The actions are permuting (4, 8, 11) thus:

(4, 8, 11) ! (8, 4, 11),

(4, 8, 11) ! (4, 11, 8),

(4, 8, 11) ! (11, 8, 4),

respectively. To justify the image further, note that the above per-
mutations are essentially taking two of the ‘circles’ on the sta↵ and
switching them, while leaving the middle in place. However, because
of the nature of octaves, this causes somewhat more drastic gaps be-
tween the notes. For example, with the first chord action depicted,
the 8 becomes the lowest note of the chord, but to get to the next 4
above, we need to traverse 6 semitones. But, because of how the chord
triples work, we need to ‘shove’ the 11 up an octave to preserve the
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pitch order (i.e. the right-most note on the triple is supposed to be the
lowest in pitch and the notes must ascend increasingly with the third
note higher than the second, and the second higher than the first).

The justification for the rest of the inversions is the same, though
we must note that for the (13) action, we shifted the chord down an
octave to make it more visually consistent with the other two (this is
valid because of tonal equivalence). This type of chord would certainly
show up in musical literature, but it is not precisely a music theoretic
construction proper (furthermore, it is not playable on one hand).

5. The hP, L,Ri Group

Our next illustration of the presence of group theory in music involves
the so-called P, L,R functions. These are music-theoretic constructions
designed by Hugo Riemann in the 1800’s to describe how major and
minor chords relate to each other. The P, L,R functions are the cen-
tral topic in the branch of music theory known as Neo-Riemannian
theory and have been studied in great detail both mathematically and
musically. Here, we are interested in the absolute essentials of these
functions, but the curious reader might find [2], [4], [7] interesting for
further reading. In addition, [3] provides a nice history of the subject
of Neo-Riemannian theory.

The P, L, and R functions are maps from C to itself. The P stands
for “parallel” and corresponds to the function which maps a major
triple to its parallel minor triple and maps a minor triple to its parallel
major triple.

The L stands for “leading tone exchange” and corresponds to the
function that maps a major chord to a minor chord defined as having
a fifth that is one semitone below the root of the major triple and vice
versa.

Finally, the R stands for “relative” and corresponds to the function
which maps a major triple to a minor triple whose root is two semitones
above the fifth of the major triad. Likewise, the R function maps a
minor triple to its relative major triple whose fifth is two semitones
below the root of the minor triple.

We will use an example to illustrate how these functions work, taking
a Cmajor chord as the argument:

P ((0, 4, 7)) = (0, 3, 7),

L((0, 4, 7)) = (4, 7, 11),

R((0, 4, 7)) = (9, 0, 4),
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and vise versa. It is known that the set hP, L,Ri, of functions on C
generated by P, L, and R, is a subgroup of Sym(C). We see that under
function composition (written here as multiplication), PP = LL = RR

are the identity of this group, call it e, which shows that each of P, L,
and R is its own inverse. Through a counter example, we see that
hP, L,Ri is non-abelian (that is, a non-commutative group):

PR((0, 4, 7)) = (9, 1, 4),

RP ((0, 4, 7)) = (3, 7, 10),

by direct computation.
The following result is proved in [4] and shows that hP, L,Ri behaves

like one of our well-understood groups. For convenience, we record the
result of [4] here:

Lemma 2. ([4]) The hP, L,Ri group is isomorphic to the dihedral
group D12 of order 24.

5.1. On the Subgroup Structure of hP, L,Ri. More specifically, in
[4], it is shown that P = R(LR)3 and hP, L,Ri can be represented as
in (3.1), with n = 24, a = L and b = LR.

Notice that as a result of [4], we know hL,Ri is the full group
hP, L,Ri. Further, in [2] and [7], it is shown that the subgroup hP, Li

generated by P and L is dihedral of size 6 (specifically, in [2], this group
is represented as in (3.1), with n = 6, a = L and b = LP = (LR)4). A
natural next question might then be: what can we say about the group
hP,Ri?

Let hP,Ri denote the subgroup of hP, L,Ri generated by the func-
tions P and R.

Since P
2 = R

2 = e, we know hP,Ri contains the identity and that
only alternating sequences of products are distinct. From this we have
that

hP,Ri = {P, PR,R(PR), (PR)2, R(PR)2, (PR)3, R(PR)3, (PR)4}.

Further, (PR)4 is the identity function, which we illustrate with the
following example:

Consider the behavior of (PR)4 on Fmajor. Note that

(PR)4(Fmajor) = (PR)3(Dmajor),

since the fifth of the Fmajor chord is 0, R gives us the minor chord
whose root is two semitones above the fifth, which is 2 in this case,
and because P maps minor to major via the third of the minor chord.
Similarly,

(PR)3(Dmajor) = (PR)2(Bmajor) = (PR)(G]major).
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And finally,

(PR)(G]major) = Fmajor.

This shows that (PR)4 behaves as the identity on Fmajor, and we en-
courage the reader to verify with similar calculations that this in fact
holds for all chords Y 2 C.

We therefore see that hP,Ri has size 8, and in fact we prove the
following:

Proposition 1. The subgroup hP,Ri is isomorphic to the dihedral
group D4 of size eight.

Proof. Since we know hP,Ri has size 8, we must show that it can be
realized in the form ha, b|a

2 = e = b
4; aba = b

�1
i. To do this, let

a = P and b = PR. We saw above that P 2 = e and (PR)4 = e (and
that 2, respectively 4, is the smallest such integer). Further, note that
aba

�1 = P (PR)P = RP = (PR)�1 = b
�1, which proves our claim. ⇤

We can therefore view hP,Ri as the group of symmetries of a square,
and hP, L,Ri as the group of symmetries of a dodecagon with ver-
tices labeled from Z12. Our goal is to reconcile how hP,Ri sits inside
hP, L,Ri with the visual of a square embedded in a dodecagon.

As a dihedral group, we have represented hP,Ri as generated by P

and PR. As symmetries of a square (which we may view as sitting
within a dodecagon sharing 4 vertices), the P and PR functions act
like a flip over a line of symmetry and a rotation of 90 degrees, respec-
tively. But recall that P can also be realized as a flip over a line of
symmetry of the dodecagon, and that either LR or its inverse RL can
be realized as the generating rotation of the dodecagon. Further, note
that PR = R(LR)3R = (RL)3. That is, the element we have chosen
as our generating rotation of the square is exactly the rotation that
occurs by applying the generating rotation of the dodecagon 3 times.

This geometric interpretation can be seen below:
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But, you may ask, what does this geometric interpretation mean
musically? Certainly our geometric interpretation has P and PR oper-
ating on the 4 vertices of a square. However, the P and PR functions
operate on major and minor triples as opposed to chords with four
notes. To understand what the vertices represent, then, we need to
instead discuss the orbit of a chord under the action of hP,Ri. That
is, we will study the set of chords obtained from a given chord by ap-
plying all elements of hP,Ri. The orbit of a C chord, for example, is
OhP,Ri(Cmajor) = {C, c,D], d], F ], f], A, a}, which is illustrated in [7].

We can use such an orbit to define an octatonic system. As discussed
in [7], the octatonic systems are sets of notes based upon the notes
required to build the chords in the orbit of a particular major or minor
triple acted upon by hP,Ri. This is the set of unique building blocks
requisite to construct any chord in the orbit under hP,Ri.

We will continue using the C major chord for our analysis. As
given in [7], the octatonic system for C major is Oct[OhP,Ri(Cmajor)] =
{0, 1, 3, 4, 6, 7, 9, 10}. Conveniently, when we take the complement,
{2, 5, 8, 11}, of Oct[OhP,Ri(Cmajor)] in Z12 to be a subset of vertices in-
side the dodecagon with labeled vertices from Z12, the resulting image
forms the square sitting within the dodecagon that we saw above. We
remark that the P function, when applied to the Cmajor chord (0, 4, 7),
has the e↵ect of switching 3 and 4, which is why we have represented it
in the picture above as flipping the third and fourth vertices. Further,
the PR function applied to Cmajor maps (0, 4, 7) to (9, 1, 4), which is
indeed obtained by the same rotation of the dodecagon past 3 vertices
that rotates our square.
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5.2. A Miscellaneous Result. We briefly digress to examine one in-
teresting consequence of systems similar to the octatonic one discussed
above. In [7], the hexatonic systems are derived from the subgroup
hL, P i  hP, L,Ri in a manner analogous to the octatonic systems.
The resulting set is given as Hex[OhL,P i(Cmajor)] = {0, 3, 4, 7, 8, 11}.
These functions Hex and Oct may be generalized in the following way:
given some major or minor chord X := (x1, x2, x3), define

Hex[OhL,P i(X)] = {x1, x1 + 3, x1 + 4, x1 + 7, x1 + 8, x1 + 11}, and

Oct[OhP,Ri(X)] = {x1, x1+1, x1+3, x1+4, x1+6, x1+7, x1+9, x1+10}.

Then, we may take the intersection of these sets:

Hex[OhL,P i(X)] \Oct[OhP,Ri(X)] = {x1, x1 + 3, x1 + 4, x1 + 7},

which is, beautifully, the set of all notes necessary to make a major or
minor chord with root x1.

6. Combining These Chord Actions

In this section, we wish to describe how the previous two examples
interact. It is clear that both the hP, L,Ri and I3 groups operate upon
major and minor triples. Along the same lines, it is musically valid to
play, for example, major C, minor c, then inverted minor c, chords in
sequence. It is also musically valid to play inversions of relative minor
chords or to change a chord from a major to a minor while maintaining
some kind of inversion. Mathematically, this implies that hP, L,Ri and
I3 groups may operate in conjunction with each other.

However, as we have seen before, the hP, L,Ri functions only oper-
ate on the chord type, while the I3 functions operate on the order of
the tones within a chord, meaning that hP, L,Ri may be viewed as a
subgroup of Sym(C), whereas I3 is a subgroup of Sym(N). Notice that
a chord having undergone an inversion does not change its identifica-
tion. That is to say, an inverted chord is still tonally the same as it
was before the inversion.

It makes sense to reconcile this issue by extending the action of the
P, L, and R functions in a natural way to inverted major and minor
chords. Namely, if � 2 hP, L,Ri and � is applied to an inversion of
the chord c, we simply take the result to be the corresponding inver-
sion of �(c). That is to say, if (x, y, z) 2 C and ⇢n 2 I3, we de-
fine �(⇢n(x, y, z)) := ⇢n(�(x, y, z)). This then allows us to consider
hP, L,Ri as a subgroup of Sym(N). Further, notice that every element
of hP, L,Ri commutes with every element of I3, by our construction.

Viewing these two groups as subgroups of the symmetric group
Sym(N) on the set of all inversions of major and minor chords, we
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may define a subset � ✓ Sym(N) as the set � = hP, L,Ri · I3 =
{�⇢|� 2 hP, L,Ri; ⇢ 2 I3}.

Proposition 2. The set � forms a subgroup of Sym(N). Moreover, �
is an internal direct product of hP, L,Ri and I3.

Proof. By observing the way hP, L,Ri and I3 behave on N, we see that
hP, L,Ri \ I3 = {e = ⇢1}, yielding that � contains the identity and
is generated by two subgroups of Sym(N) who intersect only at the
identity.

To prove that � is the stated internal direct product, it therefore
su�ces to note that �⇢ = ⇢� for all � 2 hP, L,Ri and all ⇢ 2 I3 from
our discussion above.

Finally, by the consequences of the internal direct product, it must
also be that � is a subgroup of Sym(N). ⇤

Since we know that I3 and hP, L,Ri are isomorphic to Z3 and D12,
respectively, and that an internal direct product is always isomorphic
to an external direct product, we have shown the following:

Corollary 1. The group � is isomorphic to the external direct product
D12 ⇥ Z3.

Transposition and The Circle of Fifths. In this section, we illus-
trate another application of permutation groups to music theory, this
time involving musical actions called transpositions. These actions are
studied in great detail in [4], in the context of a group known as the
T/I Group. However, here we will highlight an interesting consequence
of these functions only.

Let the functions Tn : Z12 ! Z12 for n 2 Z12 be defined by

Tn(x) := x+ n (mod 12).

These functions represent musical transpositions, which simply take
any note x 2 Z12 and shift it by an amount n 2 Z12. Performing one
of these operations is like sliding one’s finger along a keyboard where
the starting key is called x and the distance is n. It is shown in [4]
that these functions act point-wise on chords. So, by abuse of notation,
we may also consider Tn as functions Tn : Zk

12 ! Zk
12 for some k 2 N

representing the number of notes in the chord.
We will specifically consider the function T7, which operates by

T7(x) = x+7 (mod 12), and denote by hT7i the group generated by T7

under function composition (which we will represent as multiplication).
Since 7 is relatively prime to 12, it follows that 7 generates Z12.

That is, n7, as n ranges over all elements of Z, will cycle through all

f
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equivalence classes in Z12. The consequence of this is that T n
7 will cycle

through all Tr for r 2 Z12. Explicitly, we may write:

hT7i = {T0, T7, T2, T9, T4, T11, T6, T1, T8, T3, T10, T5}.

We denote by OhT7i(C) the orbit of the note C (or, depending on con-
text, the C major scale) under the action of hT7i. That is, OhT7i(C) is
the set of notes obtained by applying T7 repeatedly. Then, OhT7i(C) =
{C,G,D,A,E,B, F ], D[, A[, E[, B[, F}. The musically inclined reader
will quickly notice that we have generated the major portion of the cir-
cle of fifths!

Now, consider the set R[OhT7i(C)], comprised of the set obtained
by multiplying each element in the above orbit (identified as a major
triple) on the left by R. This is the relative minor portion of the circle
of fifths. This yields an interesting visual described in the following
proposition and illustrated below.

Proposition 3. The unionOhT7i(C)[R[OhT7i(C)] forms a commutative
diagram that is navigable by combinations of the T7 and R functions.
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7. Some Concluding Remarks

Although we’ve seen several examples of how permutation groups
can be used to describe the structure of musical chords, we’ve barely
scratched the surface of the hidden group theory within music.

One could go on, for example, to use groups to describe the chord
progressions of an ensemble, or more simply the motions of the hand of
a pianist progressing through a series of chords that make up a song.
Using 5-tuples of elements of Z12 to describe the chords a given hand is
playing, the change-of-chord could be described by adding another 5-
tuple, yielding a group isomorphic to Z5

12 (that is, the direct product of
Z12 with itself 5 times) that describes the progression of a single hand
from one chord to another. Considering both hands playing at once
and the possibility of “crossing over” the hands, we could reasonably
use the group Z5

12 ⇥ Z5
12 ⇥ S2 to describe the possibilities of chord

progressions for the piano player. (We remark that some simplification
has to be made in this example to rectify the situation that, at some
point a hand might be playing fewer than five notes. To do this, we
have to realize that (0, 0, 4, 4, 7), (0, 4, 4, 4, 7), and so on, should all be
the same musically.)

Further examples are plentiful, but it is the author’s hope that this
article has met its goal of the illumination of the crossover between
the beautifully abstract study of symmetry that is group theory and
the fundamental part of culture that is music, adding a piece atop the
existing literature about the hidden mathematical symmetries of music.
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