REGULAR COURSE SYLLABUS

School of: Professional Studies

Department: Engineering Technology

CIP Code: 15.0201

Prefix & Course Number: CET 4135 Crosslisted With*: _____

Course Title: Foundation and Geotechnical Engineering

Check All That Apply: Required for Major: x Required for Minor: _____ Specified Elective: _____

Required for Concentration: _____ Elective: _____ Service Course: _____

Credit Hours: 3 (3+0)

Total Contact Hours per semester (assuming 15-16 week semester):

Lecture 45 Lab _____ Internship _____ Practicum _____ Other (please specify type and hours): _____

Schedule Type(s): L Grading Mode(s): L

Variable Topics Courses (list restrictions, including the maximum number of hours that can be earned**):

** NOTE: This information must be included in the course description.

Restrictions (Variable Topics Course): _____

Prerequisite(s): CET 4130 with grade of “C” or better

Corequisite(s):

Prerequisite(s) or Corequisite(s): _____

Banner Enforced:

Prerequisite(s): _____
Corequisite(s): _____
Prerequisite(s) or Corequisite(s): _____

Catalog Course Description: The course applies engineering mechanics and soil mechanics principles to the provision of safe designs for foundations of bridges, buildings, towers and other structures. This course covers the analysis and design of shallow foundations, spread footings, mats, deep foundations, earth retaining structures and site exploration and characterization. It is a practical design course in foundation and geotechnical engineering.

APPROVED:

[Signature]

Department Chair OR Program Director Date

Dean OR Associate Dean Date

Associate VP, Academic Affairs Date

*If crosslisted, attach completed Course Crosslisting Agreement Form
Required Reading and Other Materials will be equivalent to:

Specific, Measurable Student Behavioral Learning Objectives:
Upon completion of this course the student should be able to (format: 1, a, i, ii, etc.):
1. Evaluate soil properties and characteristics with respect to various foundation structures selecting appropriate properties for foundation structure design.
2. Apply the engineering mechanics and soil mechanics principles to analyze and design vary foundation engineering problems.
3. Perform the geotechnical and structural engineering design for: shallow and deep foundations under vertical and lateral loads, retaining walls and basic excavation support systems.

Detailed Outline of Course Content (Major Topics and Subtopics) or Outline of Field Experience/Internship (experience, responsibilities and supervision) (format: I, A, I, a, etc.):
I. Types of Foundations in Civil Engineering
 A. Structural support (buildings)
 B. Earth structures (dams, highways)
 C. Retaining structures (walls)
 D. Soil Mechanics
 E. Site Exploration and Characterization
II. Loads on Foundations
 A. Structure loads
 B. Lateral loads
 C. Traffic loads
 D. Water loads
 E. Seismic loads
 F. Building Code loads
III. Shallow Foundations
 A. Bearing Capacity
 B. Spread footings – Vertical and lateral loads
 C. Mats
IV. Pile Foundations
 A. Pile types – Vertical and lateral loads
 B. Pile driving formulae (steel, concrete)
 C. Skin friction
 D. Pile groups
V. Drilled-Shaft and Caisson Foundations
 A. Bearing capacity
 B. Settlement
VI. Retaining Structures
 A. Lateral earth pressure
 B. Drainage
 C. Surcharges
 D. Settlement and rotation
 E. Anchors
 F. Specialized retaining structures (slurry walls, MSE walls, Soil Nail walls)
VII. Soil Improvements and Ground Modification
 A. Foundations on Weak and Compressible Soils
 B. Foundations on Expansive Soil
 C. Foundations on Collapsible Soil
Evaluation of Student Performance (format: 1, a, i, ii, etc.):
1. Written examinations
2. Assigned homework problems
3. Research/team report
4. Oral presentations on faculty-assigned topic